Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis.
نویسندگان
چکیده
The EMBRYONIC FLOWER (EMF) genes are required to maintain vegetative development in Arabidopsis (Arabidopsis thaliana). Loss-of-function emf mutants skip the vegetative phase, flower upon germination, and display pleiotropic phenotypes. EMF1 encodes a putative transcriptional regulator, while EMF2 encodes a Polycomb group (PcG) protein. PcG proteins form protein complexes that maintain gene silencing via histone modification. They are known to function as master regulators repressing multiple gene programs. Both EMF1 and EMF2 participate in PcG-mediated silencing of the flower homeotic genes AGAMOUS, PISTILLATA, and APETALA3. Full-genome expression pattern analysis of emf mutants showed that both EMF proteins regulate additional gene programs, including photosynthesis, seed development, hormone, stress, and cold signaling. Chromatin immunoprecipitation was carried out to investigate whether EMF regulates these genes directly. It was determined that EMF1 and EMF2 interact with genes encoding the transcription factors ABSCISIC ACID INSENSITIVE3, LONG VEGETATIVE PHASE1, and FLOWERING LOCUS C, which control seed development, stress and cold signaling, and flowering, respectively. Our results suggest that the two EMFs repress the regulatory genes of individual gene programs to effectively silence the genetic pathways necessary for vegetative development and stress response. A model of the regulatory network mediated by EMF is proposed.
منابع مشابه
EMBRYONIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis.
Polycomb group (PcG)-mediated gene silencing is a common developmental strategy used to maintain stably inherited repression of target genes and involves different protein complexes known as Polycomb-repressive complexes (PRCs). In animals, the two best-characterized PcG complexes are PRC1 and PRC2. In this report, we demonstrate that the plant-specific protein EMBRYONIC FLOWER1 (EMF1) function...
متن کاملEMF genes maintain vegetative development by repressing the flower program in Arabidopsis.
The EMBRYONIC FLOWER (EMF) genes EMF1 and EMF2 are required to maintain vegetative development and repress flower development. EMF1 encodes a putative transcriptional regulator, and EMF2 encodes a Polycomb group protein homolog. We examined expression profiles of emf mutants using GeneChip technology. The high degree of overlap in expression changes from the wild type among the emf1 and emf2 mu...
متن کاملEMF genes regulate Arabidopsis inflorescence development.
Mutations in EMBRYONIC FLOWER (EMF) genes EMF1 and EMF2 abolish rosette development, and the mutants produce either a much reduced inflorescence or a transformed flower. These mutant characteristics suggest a repressive effect of EMF activities on reproductive development. To investigate the role of EMF genes in regulating reproductive development, we studied the relationship between EMF genes ...
متن کاملEMF1 and PRC2 Cooperate to Repress Key Regulators of Arabidopsis Development
EMBRYONIC FLOWER1 (EMF1) is a plant-specific gene crucial to Arabidopsis vegetative development. Loss of function mutants in the EMF1 gene mimic the phenotype caused by mutations in Polycomb Group protein (PcG) genes, which encode epigenetic repressors that regulate many aspects of eukaryotic development. In Arabidopsis, Polycomb Repressor Complex 2 (PRC2), made of PcG proteins, catalyzes trime...
متن کاملMolecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes
Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 152 2 شماره
صفحات -
تاریخ انتشار 2010